奇热小说网 www.qirexs.com,带着超市去末世无错无删减全文免费阅读!
合观测事实。
按照广义相对论,如果考虑到物体之间的惯性力或引力相互作用,就不存在大范围的惯性参照系,只在任意时空点存在局部惯性系;不同时空点的局部惯性系之间,通过惯性力或引力相互联系。存在惯性力的时空仍然是平直的四维闵科夫斯基时空。
存在引力场的时空,不再平直,是四维弯曲时空,其几何性质由度规具有符号差的四维黎曼几何描述。时空的弯曲程度由在其中物质(物体或场)及其运动的能量-动量张量,通过引力场方程来确定。
在广义相对论中,时间-空间不再仅仅是物体或场运动的“舞台”,弯曲时间-空间本身就是引力场。表征引力的时间-空间的性质与在其中运动的物体和场的性质是密切相关的。
一方面,物体和场运动的能量-动量作为引力场的源,通过场方程确定引力场的强度,即时空的弯曲程度;另一方面,弯曲时空的几何性质也决定在其中运动的物体和场的运动性质。
如太阳作为引力场的源,其质量使得太阳所在的时空发生弯曲,其弯曲程度表征太阳引力场的强度。最邻近太阳的水星的运动轨迹受的影响最大,经过太阳边缘的星光也会发生偏转,等等。
广义相对论提出不久,天文观测就表明,广义相对论的理论计算与观测结果是一致的。
对于空间和时间的认识,一直与宇宙的认识密切相关。现代宇宙论以宇宙学原理和爱因斯坦引力场方程为基础。
宇宙学原理认为,宇宙作为一个整体,在时间上是演化的,即有时间箭头,在空间上是均匀各向同性的。
量子力学描述的系统的空间位置和动量、时间和能量无法同时精确测量,他们满足不确定度关系;经典轨道不再有精确的意义等,如何理解量子力学以及有关测量的实质,一直存在争论。在末世之中,关于量子纠缠、量子隐形传输、量子信息等的研究对于时间-空间密切相关的因果性、定域性等重要概念,也带来新的问题和挑战。
量子力学与狭义相对论的结合导致的量子电动力学、量子场论、电弱统一模型,包括描述强作用的量子色动力学在内的标准模型,虽然取得很大成功,但也带来一些挑战性的疑难。在深刻改变着一些有关时间-空间的重要概念的同时,也带来了一些原则问题。
如真空不空、存在着零点能和真空涨落,大大改变了物理学对于真空的认识。
在此基础上,量子电动力学的微扰论计算可给出与实验精密符合的结果,然而这个微扰展开却是不合理的。对称性破缺的机制使传递弱作用的中间玻色子获得质量,然而黑格斯场的真空期望值和前面提到的零点能,在一定意义上相当于宇宙常熟,其数值却比天文观测的宇宙学常数大了几十到一百多个数量级。(未完待续。)
合观测事实。
按照广义相对论,如果考虑到物体之间的惯性力或引力相互作用,就不存在大范围的惯性参照系,只在任意时空点存在局部惯性系;不同时空点的局部惯性系之间,通过惯性力或引力相互联系。存在惯性力的时空仍然是平直的四维闵科夫斯基时空。
存在引力场的时空,不再平直,是四维弯曲时空,其几何性质由度规具有符号差的四维黎曼几何描述。时空的弯曲程度由在其中物质(物体或场)及其运动的能量-动量张量,通过引力场方程来确定。
在广义相对论中,时间-空间不再仅仅是物体或场运动的“舞台”,弯曲时间-空间本身就是引力场。表征引力的时间-空间的性质与在其中运动的物体和场的性质是密切相关的。
一方面,物体和场运动的能量-动量作为引力场的源,通过场方程确定引力场的强度,即时空的弯曲程度;另一方面,弯曲时空的几何性质也决定在其中运动的物体和场的运动性质。
如太阳作为引力场的源,其质量使得太阳所在的时空发生弯曲,其弯曲程度表征太阳引力场的强度。最邻近太阳的水星的运动轨迹受的影响最大,经过太阳边缘的星光也会发生偏转,等等。
广义相对论提出不久,天文观测就表明,广义相对论的理论计算与观测结果是一致的。
对于空间和时间的认识,一直与宇宙的认识密切相关。现代宇宙论以宇宙学原理和爱因斯坦引力场方程为基础。
宇宙学原理认为,宇宙作为一个整体,在时间上是演化的,即有时间箭头,在空间上是均匀各向同性的。
量子力学描述的系统的空间位置和动量、时间和能量无法同时精确测量,他们满足不确定度关系;经典轨道不再有精确的意义等,如何理解量子力学以及有关测量的实质,一直存在争论。在末世之中,关于量子纠缠、量子隐形传输、量子信息等的研究对于时间-空间密切相关的因果性、定域性等重要概念,也带来新的问题和挑战。
量子力学与狭义相对论的结合导致的量子电动力学、量子场论、电弱统一模型,包括描述强作用的量子色动力学在内的标准模型,虽然取得很大成功,但也带来一些挑战性的疑难。在深刻改变着一些有关时间-空间的重要概念的同时,也带来了一些原则问题。
如真空不空、存在着零点能和真空涨落,大大改变了物理学对于真空的认识。
在此基础上,量子电动力学的微扰论计算可给出与实验精密符合的结果,然而这个微扰展开却是不合理的。对称性破缺的机制使传递弱作用的中间玻色子获得质量,然而黑格斯场的真空期望值和前面提到的零点能,在一定意义上相当于宇宙常熟,其数值却比天文观测的宇宙学常数大了几十到一百多个数量级。(未完待续。)